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Heat exchange in very rarefied gases has been treated in a considerable
number of papers. In [1,2 ] and a number of others, the question of de-
termining the equilibrium temperature of a body (a flat plate or a
cylinder) moving with constant velocity is considered. The body is
assumed to be a perfect conductor and the total heat flow across its
surface 1s calculated. Then, by virtue of the agsumption of perfect con-
ductivity, we avoid the unresolved questions connected with the unequal
heating of surface elements which are differently oriented in relation
to the velocity of motion. Moreover, as a result of it being a steady
problem, we leave aside consideration of the process of establishing the
temperature equilibrium, which is well known to be important at great
heights.

In the present paper, by making use of the expressions obtained in
[3] for the heat transfer, we determine the temperature of a thin body
which has small unsteady motions,* in addition to its forward velocity,
both in the case of purely convective heat exchange and also in the case
of radiative heat transfer. The temperature is determined as a function
of time, local angle of attack, velocity, the characteristics of the

+ A similar study can be carried out for the determination of the
temperature of the surface of thick convex bodies in steady motion,
but instead of Expression (1.1) of the present paper we need to use
the corresponding expression for the heat transfer derived, for
example, in [1,21].
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surface and the thermodynamic parameters of the medium at the height
under consideration. We notice the important dependence of the time for
establishing temperature equilibrium upon the height. For the assumed
model of the interaction of the gas with the surface we find the tempe-
rature of the gas in contact with the surface and the temperature of the
surface, and indicate the dependence of the temperature discontinuity
between the gas and the wall upon the assumed model of interaction. We
point out a certain similarity between the gasdynamic stagnation tempe-
rature and the equilibrium temperature of a plate in free-molecular flow.
This fact, together with the similarity established in [3 ] petween the
expression for the excess pressure and the "piston theory" formula used
in gasdynamics, may provide a certain basis for the application of the
expressions obtained here to the temperature in the field of the
mechanics of a continuous medium.

1. Let a body be moving through a highly rarefied gas with a constant
velocity V relative to a certain reference system fixed in space (the
unperturbed velocity), and let it perform small unsteady motions rela-
tive to this unperturbed state. Then, according to the kinetic model of
a gas assumed in [3 ], and under the limitations therein prescribed on
the shape and motion of the body, we know that the heat transfer in time
dt to the surface element ds is determined by the following expression:
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All tensor quantities are considered in coordinates related to the
unperturbed constant velocity in the conventional manner. The following
notation has been used: p_, T are the density and temperature of the
incident medium, ¢° is the most likely velocity of random motion of the
molecules,w,fS , wj, are covariant derivatives of the components of the
displacement vector with respect to the coordinates and time, w_% =-=1,
R is the gas constant, &8 is the fundamental metric tensor of the co-
ordinates under consideration, a is the accommodation coefficient, ¢ is
the coefficient of diffuse reflection, and 1; is the temperature of the
surface.

In determining the heating of the body let us take the following
thermomechanical model. We shall assume that the layer of the rigid body
next to ds (henceforth this layer will be called the surface of the
element or body) has a thickness h sufficiently small so that we can
assume that the mass included in the volume h ds has a uniform temperature
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T'. The inner surface of the layer will moreover be assumed to be adi-
abatically insulated. Then into the volume h ds under consideration
there flows through ds a quantity of heat AQ on account of the impacts
with the gas molecules. Through the side faces there flows a quantity
A()l on account of the heat conduction from the parts of the body
immediately surrounding h ds. Through ds there is emitted a quantity of
heat AQ2 on account of radiation (it is assumed that the surface
radiates as a perfect black body according to the Stefan-Baltzmann law).
Accordingly, the quantity of hesat 15(& used up in the heating of the sur-
face element is determined from the condition of heat balance by the
following expression:

A Qs = cpy hds dTy, AQs=AQ  AQ:i—AQ, (1.2)

Here ¢ and p, are the specific heat capacity and the density of the
body, respectively.

Let us express AQ1 and_ A02 by means of the parameters of the medium
and the body. It is easy to see that

AQu= kT g8 hds dt (1.3)

where &k is the coefficient of thermal conductivity of the rigid body,
7;/Q88aﬁ is the Laplace operator on the function T' in the coordinates
under consideration

AQy =T tdsdt (1.4)
and o-is the Stefan-Boltzmann constant®.

Substituting (1.1), (1,3) and (1.4) into (1.2), we obtain, generally
speaking, a nonlinear partisl differential equation for the determina-
tion of the telpegature ?; of the surface as a function of the time ¢,
the coordinates x®, the properties of the surface, the characteristics
of the motion of the body, and the thermodynamic parameters of the
gaseous medium at the height under consideration:
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* In the case when the body is not perfectly black, we have to attach
to the right-hand side of the equation a factor characterizing the
degree of blackness.
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Questions related to the heat conduction along the surface will not
be considered in this paper; as a result, the first term on the right-
hand side of Equation (1.5) is neglected. Accordingly, we exclude from
consideration the thermal interaction of the parts of the body with each
other. Then Equation (1.5) is transformed into an ordinary differential
equation with respect to the unknown function T 2 where the time ¢t is
the independent variahlq, and the coordinates z are parameters. The
displacement vector w(xz®, t), characterizing the unsteady motion of the
surface, is assumed to be a given function of the coordinates and time.
Equation (1.5) can be put in the form

aT

= B1— BT -+ By + By — By (1.6)

Here we have introduced the following notation:
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Let us examine in some very simple particular problems the character-
istic singularities of the phenomens which may arise in the assumed
models of gas and body (we have in mind the kinetic model of a gas and
the thermomechanical model of the body).

2. Let us consider the case of purely convective heat transfer (radi-
ation absent). Equation (1.8) becomes linear

dT
2 =B1—BiT + B3+ B, 2.1

and its general solution is given by the formula

T = exp (—— tg Bgdt) [Too +
0

where 150 is the dimensionless initial temperature of the element of the
surface.

(B1+ By + Ba) exp (§ Bzdx) dt (Too T;. ) (2.2)

S ™

Let the body perform only the unperturbed motion, then the Bi do not
depend on time, and the gemeral solution in this case with 82£=0 has the
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form*

T = T exp (— Byt) + [t — exp (— Bst)] W

or, substituting for the Bi their expressions, introducing the local
angle of attack 3 and replacing S by its value

S=V1i/2u M
we obtain

T = Toexp [— ayat (1 4 Vxr/2MB)} + t {1+ —q <1+3c_3ﬂ_{_2>+

o
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Hence, when t » o we find an asymptotically attained dimensionless
equilibrium temperature

} {—exp|—aat (1 + Vun/2MB)] (2.3)

st> M Vo ] 2MB } 2.4
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On a plate, moving with zero angle of attack, with ¢ = 1 the equi-

librium temperature becomes
M2
T,=1+ e {2.5)

According to the restrictions postulated in [3 ] on the shape and
motion of the body (Sn << 1), the singularities in Expressions (2.3),
(2.4) occur outside the limits of applicability of the expression for
the heat transfer in the form (1.1) (the appearance of the singularity
is a result of introducing the linearization in [ 3 ]). The presence of
the singularity may serve as a certain indication of the limits of
applicable values of M.

Let us consider the steady temperature as a function of the local
angle of attack. It is easy to see that the temperature of the parts of
the surface turned towards the stream are higher than the temperature

* The case 32 = 0, according to the meaning of the quantities determin-
ing B2 (1.7), can occur either when a = 0 or when ¢ = 0. The first
case corresponds to heat transfer being independent of the tempera-
ture of the surface, and it leads, as is apparent from (2.2), to a
linear increase with time of the temperature of the surface. In the
case ¢ = 0 the heat transfer to the surface is zero and for the whole
duration of the motion the temperature remains equal to its initial
value,
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attained on the flat plate. Let us find the difference in the equilibrium
temperatures A‘Te for two elements of the surface inclined at angles f3
and — 8 with respect to the direction of the velocity of the incident
stream:

M3/ xn 1

AT, = 20 ¥V 2 i—xn/2 M?p?

(2.6)

Calculations carried out for a number of values of M and B show that
the difference of temperature at the points of the surface under con-
sideration consists, as a rule, of a small percentage of the correspond-
ing temperature of the flat plate at zero angle of attack, at least in
the region of permissible values of Hﬁ3 (obviously, with increase in ¥
the permissible values of the angle of attack ﬁ diminish). However, it
can be shown that allowance for this difference of temperature is im-
portant in the determination of thermal stresses arising in structures.

In [1,2 ] only the equilibrium temperature is determined, which does
not depend on the height, as is clear from (2.4). It must be remarked,
however, as calculations from Formula (3) show, that at the greatest
heights (= 100 km and higher) the process of establishing the equilibrium
temperature occurs very slowly. This can be seen in the table and Fig.1,
vwhere the broken curves show the variation of the temperature T, of the
body without allowance for radiation, and the full curves show the tempe-
rature 15 of the body with allowance for radiation. So, for example, in
the motion of a body at zero angle of attack at heights of 150-200 km
with dimensionless velocity S = 20 for a period of 2 1/2 hours the
temperature of the surface remains practically equal to the initial
temperature. Notwithstanding the fact that in the abhsence of radiation
the equilibrium temperature does not depend on height, the time taken to
establish this temperature is considerably influenced by the height.

Let us consider the expression for the equilibrium temperature set up
on & flat plate (2.5). From boundary-layer theory it is known [4] that
in the flow of a steady stream of compressible gas with Prandtl number
equal to unity past a plate, with the so-called "adiabatic wall" as the
temperature boundary condition (it is assumed that the temperature of
the gas at the surface of the plate is equal to the temperature of the
plate), there exists an integral of the equation of energy, the Stodola-
Crocco integral, which may be written for dimensionless temperatures in
the form

Te' =1 5 (x—1) M? (2.7)

It is not difficult to show the similarity of the equilibrium tempe-
rature (2.5) obtained in the case under consideration with the Stodola-
Crocco integral. Comparing (2.5) and (2.7), we can see that whena =1
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these expressions differ only by the factor involving x, and they co-
incide when x = 2. When k < 2 the equilibrium temperature (2.8), es-
tablished on the flat plate with free-molecular flow, is higher than the
corresponding stagnation temperature (2.7) of continuous flow, which is
found in accordance with the results of [ 2 ]. but not higher than the
kinetic temperature® 1} =1+ Kx?/s of the free-molecular flow with mass
velocity V.

In the general case a # 0 the equilibrium temperature (2.4)
established on the surface depends upon the magnitude of a¢; a = 0 is &
special case, when the body receives heat but does not give it up, as a
result of which the temperature increases without limit and, as is
evident from (2.2), there does not exist a steady bounded solution of
the problem.

The boundary-layer condition on the surface temperature (equality of
the temperature of the surface and of the gas in contact with the sur-
face) is not the only one applicable to the stated problem, and it can-
not always apply. Thus, the assumed model of interaction of the mole-
cules of the gas with the surface already determines the value of the
temperature of the gas in contact with the wall, which is different from
the equilibrium temperature T, established on the surface itself (2.4).
The dimensionless temperature T° of the gas in contact with the surface
of the body, obtained by means of the boundary value of the distribution
function ([ 3 ], Formula (1.1)), is given by

T waeT+L2‘;*‘(z+”“‘ 1+]/-.- M3 ]
[(i+—~ 1 —a) — cel’] (2.8)

In the case of the commonly accepted value of the accommodation co-
efficient a = 1, Expression (2.7) has the form

T° ——eT+2“‘"’[<1+1%’f (1+'}/%1‘/13H—8—2T- 2.9)

Accordingly, the model is such that the temperature of the gas in
contact with the wall depends upon the kinetic temperature of the gas,

* The kinetic temperature of a gas is found [5] from the relation

L ary = \dosae | e
[23 O

(Q is the region of integration, 0 < |e¢ | < =) in the given case f
is the Maxwell distribution with mass velocity Vv
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the temperature of the wall, its shape and the nature of the interaction
of the molecules with the surface.

Let us consider a particular case of the interaction of the molecules
with the surface. With pure specular reflection (¢ = 0) the temperature
of the gas in contact with the wall does not depend on the temperature
of the wall

(14 o)1/ F )

and in the case of a flat plate is equal to the kinetic temperature of
the gas. In the case of pure diffusive reflection (¢ = 1)

T° — T+-;-“1 + —;—an)(1+ Vi MB) — T} (2.10)

and for a flat plate, moving at zero angle of attack, we obtain (with
a=1)

T°=T+ 5 (1+ 5 xM*—T) (2.11)

From (2.11) we can see that T°< T if the surface possesses a tempe-
rature higher than the kinetic temperature of the gas, and vice versa.
Accordingly, generally speaking, at the contact surface of the gas with
the surface (within the assumptions of the accepted model of the gas,
the surface and their interaction) there exists a discontinuity of
temperature, and only in the special case when the flat plate warms up
to the kinetic temperature of the stream does the temperature of the gas
in contact with the flat plate equal the temperature of the plate itself.
Moreover, this temperature is different from the equilibrium temperature,
set up in the plate as a result of only convective heat transfer.

Expression (2.8) for the temperature of the gas in contact with the
wall can be used as a boundary condition in the solution of temperature
problems in the gas.

3. Let us consider heat transfer with radiation. In the case of un-
perturbed motion of the surface the Bi do not vary with time, the vari-
ables in the equation (1.68) are separated, and its solution can be ob-
tained in quadratures

T
= dT
B i By — BoT' 4 B3 4 By — B;T* 3.9)
o0

Calculations which have been carried out show (Fig. 1 and the table)
that at the greatest heights (150 km and higher) radiation plays s
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fundamental part in heat transfer from the surface to the medium. If we
take for the initial temperature the temperature of the surrounding

Dependence of dimensionless temperature
on time with a=1, ¢ = 0, S= 20,
¢=0.12 cal.cm g} deg™ 1,

Py="18¢8 cd"s, k= 0.5 cm.

H.p T T
A oo Lo Ty 2
7'7!: ’,t
25 | H=100km .| 10 | 1.28 1.2759
- | 000 =0.829-100 & cmi 2| 18 15142
Ly Toome237°K 30 | 10 69201
;#1700 km * 20 | 2196 | 1.80242
50 | 2.306 | 1.8587
60 | 2.792
o | 201 1.889
H=150 km .| 10 | 1.002 | 0.87623
poo=0.34-10-11 g cni 20 | 1.004 | 0.80394
Teo=418°K 30 | 1.006 | 0.75319
20 0.71447

50 | 1.008 | 0.68343
60 | 1.00995 | 0.65773
70 | 1.012 | 0.6359
80 | 1.014 | 0.61703
90 | 1.0146 | 0.60049
100 | 1.016 | 0.58572
110 | 1.018 | 0.57269
120 | 1.02 0.56058
130 | 1.022 | 0.55007
140 | 1.024 | 0.54022
150 | 1.026
o | 201 0.328

H=200 kR 5| 10 | 1.0009f | 0.53505
poo=0.166-10-12g cM 20 | 1.002 | 0.49705

Too=B4T°K 30 | 1.0028 | 0.46875

03 40 | 1.0038 | 0.4464
L. .. tmin 50 | 1.0048 | 0.42303
g 20 37 “73g 60 | 1.0058 | 0.41252
70 | 1.0068 | 0.39915

80 | 1.0076 0.38745
90 | 1.0086 0.35997

Fig. 1. 100 | 1.0096 | 0.33954
110 | 1.0106
120 | 1.0116
130 | 1.0124
140 | 1.0134
150 | 1.0144
oo 201 | 0.421

medium, then, as is evident from Fig. 1, the equilibrium temperature in
the presence of radiation heat transfer, beginning at a height of 150
km, is lower than the temperature of the surrounding medium and much
lower than the equilibrium temperature found in s calculation taking
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account only of purely convective heat transfer.

And here, as also in the preceding case (Section 2), it is necessary
to pay attention to the duration of the process of establishing the
equilibrium temperature. The vari-

ation of the temperature with time f_:{i{u“ . Ter B=3
for different heights was obtaimed  IFpF 1 T | - 77 ]
by numerical integration of Equa- 12 oL A 8s
tion (1,8), the thermodynamic _~116 83 | VX
characteristics of the medium at 10 N ;?’/, P
different heights being obtained - ;}f’ A )
from 16,7 1. In the calculations the 8 —— -l
surface was taken to have the follow- - ﬁy//’
ing characteristics: ¢ = 1, ¢ = 1, § /7 Z
e= 0,12 cal.g"l em 3 deg‘l, Py = B 7 /
7.9 g cm’a, h= 0.5 cm. 4 /

4. The results obtained in this 2 {
paper, generally speaking, are valid ¢ sec

only for great heights in the region 0 VR R Sy e S
of free-molecular flow. We have al-
ready noticed the analogy established Fig. 2.
in [3 ] between the pressure in free-
molecular flow and the flow of an
ideal compressible fluid. Comparison of Formulas (2.7) and (2.5) of the
present paper allows us to perceive a similar analogy with regard to
temperatures. Since in the mechanics of a continuous medium we have still
not discovered a simple relation between
IETTE — the temperature of the surface or the
- " heat intake and the local angle of attack
=47 1#’3’“:: p— in unsteady motion, there is some
p"i:,/fé;-‘:? interest, in view of the specified

analogy, in assuming (up to the present
time, we have failed to obtain the

i,8ec
¢ ) 50 100 rigorously proved dependence of tempera-
ture and heat intake on the local angle
Fig. 3. of attack) as a hypothesis for the gas-

dynamic calculations the expression ob-
tained in form (1.1) for the heat intake and all the consequences aris-
ing therefrom.

Computations were carried out for the determination of temperature
at heights 20-50 km, both in the case of purely conductive heat trans-
fer, and also for heat transfer with radiation when S = 5, The results
show that with decrease of height the part played by radiation in the



1696 N.T. Pashchenko

overall heat balance decreases (we must not, however, forget that in
this problem we have considered only the radiation of the surface itself,
and have not taken into account the influence of radiation of the gas).
In Figs. 2 and 3 are shown the variation with time of the temperature of
the body 13 without allowing for radiation, and 7& with allowance for
radiation. Figure 2 shows the process of establishing the equilibrium
temperature at a height of 20 km, and Fig. 3 at a height of 50 km. Tel
and Tez denote the equilibrium temperatures in the absence and presence
of radintion, respectively. Prom the graphs it is clear that as the
height decreases the process of establishing the equilibrium temperature
proceeds significantly faster. In the graphs we can also see the in-
fluence of the angle of attack on the process of establishing the equi-
librium temperature.
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